Diesel Fuel Comparison Study Workshop

August 14, 2008

California Environmental Protection Agency

Agenda

Background

- •AB679 (Calderon)
- Legislative Intent
- Project Schedule
- Draft Test Plan Review
 - Objective & Scope
 - Proposed Test Engine/Cycle Selection
 - Proposed Test Vehicle/Cycle Selection
- Diesel Fuel Properties
 - •CARB ULSD
 - Federal ULSD
 - •EPA Unified Model Results
- Future Discussion Topics
- Next Meeting

Background

Assembly Bill 679 (Calderon)

- Requires ARB to convene a panel of interested parties to develop a test protocol
- Test program shall measure the emissions benefits of CARB diesel fuel
- Conduct test program
- Report the results to the Senate Committee on Environmental Quality, the Senate Committee on Transportation and Housing, and the Assembly Committee on Transportation

Background

Legislative Intent

- Federal ultralow diesel may produce emissions benefits closer to those of CARB diesel
- Thought to be especially significant for HD diesel engines employing new technology (e.g. EGR)
- Higher cost of CARB diesel is a competitive disadvantage for CA trucking industry
- Develop and implement test plan to measure differences in NOx & PM emissions between CARB diesel and Federal ultralow diesel

Project Schedule

- Contract now in place with UCR CE-CERT for emissions testing
- Draft test plan available for review and comment http://www.arb.ca.gov/fuels/diesel/dieselcomp/dieselcomp.htm
- Review of fuel properties underway, soliciting comments
- Emissions Testing Scheduled to begin in late 2008
 - Coordinating schedules with Biodiesel Research Program

Draft Test Plan Review

 Assessment of the Emissions from the Use of California Air Resources Board Qualified Diesel Fuel in Comparison with Federal Diesel Fuels – Overview

Dr. Thomas D. Durbin
University of California, Riverside
CE-CERT

Objective & Scope

- Design & implement test program to define the emissions benefits of CARB diesel fuel versus several different Federal diesel fuel blends
 - Proposed scope:
 - Engine dyno Test 3 engines, multiple test cycles
 - Chassis dyno 12 to 15 test vehicles, multiple test cycles
 - Fuels 1 'representative' CARB diesel, 2 Federal diesel 'blends'
 - Emissions measurements THC, CO, CO2, NOx, NO, PM

Test Engine Selection - Engine Dynamometer Testing

- Test Engine 1 Selection Confirmed
 - 2006 Cummins ISM 370, 10.8 liter, EGR
 - EFN: 6CEXH0661MAT
- Test Engine 2 Selection Confirmed
 - 1991 DDC Series 60, 11.1 liter
 - EFN: MDD11.1FZAZ
- Test Engine 3 Tentative
 - 2007 DDC MBE4000, 12.8 liter
 - EFN: 7DDXH12.8DJA
 - EGR+OC+PTOX

Test Cycle Selection – Engine Dynamometer

- Recommend using two test cycles
 - First Cycle: Heavy Duty Federal Test Procedure (FTP) Transient Cycle
 - Currently used for emission testing of HDD on-road engines
 - Second Cycle: Propose using 'Translated' test cycle developed as part of the Biodiesel Research Program
 - Would allow comparison of engine dyno results with chassis dyno testing
 - Engine dyno results could be confirmed by chassis testing of in-use HDD fleet
 - Translated Urban Dynamometer Driving Schedule (UDDS)
 - Alternative Second Cycle: ARB Highway HDDT Cycle

Engine Dynamometer Test Matrix

- All emissions tests performed in triplicate
- Replicate baseline tests
- 24 tests per engine

Fuel Type	FTP Transient Test Cycle	Additional Test Cycle
CARB ULSD	3	3
Federal – A	3	3
Federal – B	3	3
CARB ULSD	3	3

Proposed Test Vehicle Selection - Chassis Dynamometer Testing

- Propose testing a matrix of 12 15 vehicles
 - Matrix should be based on CA's in-use HD on-road fleet
 - Should incorporate a range of technologies if possible
 - Final matrix to be determined
- Vehicle acquisition
 - Advertisement
 - Rental / lease
 - Private owners
- Resources available for vehicle recruitment

Test Cycle Selection – Chassis Dynamometer

- Recommend using three test cycles
 - First Cycle: Urban Dynamometer Driving Schedule (UDDS)
 - Standard chassis dyno test cycle for HD vehicles
 - Second Cycle: 'Translated' test cycle from Biodiesel Research Study
 - Lightly loaded UDDS, or
 - ARB Highway HDDT Cycle
 - Third Cycle: Central Business District (CBD) bus cycle

Chassis Dynamometer Test Matrix

- 3 4 test iterations proposed for all tests
- 9 12 tests per vehicle

Fuel Type	UDDS	Test cycle B	Test Cycle C
CARB ULSD	3 - 4	3 - 4	3 - 4
Federal – A	3 - 4	3 - 4	3 - 4
Federal – B	3 - 4	3 - 4	3 - 4

Diesel Fuel Selection

- Propose using three test fuels:
 - Representative or 'Average' CARB ULSD
 - Representative or 'Average' Federal ULSD
 - Federal ULSD with fuel properties that represent the upper/lower boundaries, affecting emissions characteristics

CARB Diesel Fuel Properties Average Pool Properties¹: Summer 2006²

Property	CARB ULSD
API Gravity	38.5
Rel Density (60/60°F)	0.8324
T50 (F)	479.3
Aromatics (v/v)	17.6
Cetane Number (additized)	51.3
Cetane Number (clear)	49.1
Sulfur (ppm)	4.4

¹ All data represent volume weighted averages.

² Summer 2006: Refers to the period from June 1 through September 20, 2006.

'Average' CARB ULSD Properties Proposed Ranges for Test Fuel Selection

Property	Range
API Gravity	38 - 39
T50 (°F)	470 – 490
Aromatics (v/v)	16 - 20
Cetane Number (additized)	50 - 54
Sulfur (ppm)	<8

Federal Diesel Fuel Properties

"Alliance of Automobile Manufacturers" North American Fuel Survey"
Summary Statistics for Selected Properties from the Winter 2007 & Summer 2007 Surveys
Note: Statistics are based on data from 18 U.S. cities, including Los Angles

#2 Regular 20		07 Winter ¹		2007 Summer ²		
Diesel S15	min	avg	max	min	avg	max
Rel Density (60/60°F)	0.8217	0.8461	0.8625	0.8169	0.8463	0.8602
T50 (℉)	442	500	551	452	504	548
Aromatics (v/v)	16.8	28.7	38.9	12.1	27.5	40.0
Cetane Number	41.1	42.8	46.7	40.2	46.9	56.6
Sulfur ³ (ppm)	1	6	12	1	6	17

¹ Samples taken in January 2007

² Samples taken in July 2007

³ Using ASTM D5453 on S15 samples only

Federal Diesel Fuel Properties

Northrop Grumman 2007 Diesel Fuel Oils Survey, April 2008 2-D Low Sulfur On-Highway Fuel, Summer 2007

Droporty	2007 Summer ¹			
Property	min	avg	max	
Gravity, API	34.1	35.9	39.0	
T50 (℉)	476	496	519	
Aromatics (v/v)	17.5	28.9	35.3	
Cetane Number	42.0	46.5	54.4	
Sulfur (ppm)	3	6	8	
¹ Based on 17 samples only				

Comparison of Federal Diesel Fuel Survey Data

Averages Properties of Samples Collected Summer 2007

Properties	"Alliance of Automobile Manufacturers" North American Fuel Survey Averages ¹ , Summer 2007	Northrop Grumman 2007 Diesel Fuel Oils Survey, April 2008 Averages ² , Summer 2007
Gravity, API	35.7	35.9
T50 (°F)	504	496
Aromatics (v/v)	27.5	28.9
Cetane Number	46.9	46.5
Sulfur (ppm)	6	6

¹ Statistics are based on data from 18 U.S cities, includes 141 samples, 8 from Los Angles, California

² Statistics are based on data from 17 diesel fuel oils marketed throughout the United States by 4 petroleum refining companies

'Average' Federal ULSD Properties Proposed Ranges for Test Fuel Selection (Federal – A)

Property	Range
API Gravity	35 - 37
T50 (°F)	490 – 510
Aromatics (v/v)	27 - 33
Cetane Number	44 - 46
Sulfur (ppm)	<15

'Boundary' Federal ULSD Properties Proposed Ranges for Test Fuel Selection (Federal – B)

Property	Range
API Gravity	33 - 34
T50 (°F)	-
Aromatics (v/v)	35 - 40
Cetane Number	40 - 42
Sulfur (ppm)	<15

Results from EPA's Unified Model

Proposed Average CARB ULSD vs. Proposed Federal - A

EPA's Unified Model Results	Default NOx Represents All Engines (g/bhp-hr)	Group L NOx Represents EGR Engines (g/bhp-hr)	Default PM Represents All Engines (g/bhp-hr)
Federal - A ULSD	4.819	2.551	0.150
AVG CARB ULSD	4.578	2.435	0.140
Emission Change	- 5.0%	- 4.2%	- 6.5%

Results from EPA's Unified Model

Proposed Average CARB ULSD vs. Proposed Federal - B

EPA's Unified Model Results	Default NOx Represents All Engines (g/bhp-hr)	Group L NOx Represents EGR Engines (g/bhp-hr)	Default PM Represents All Engines (g/bhp-hr)
Federal - B ULSD	4.975	2.623	0.161
AVG CARB ULSD	4.578	2.435	0.140
Emission Change	- 8.0%	- 7.2%	- 12.8%

Future Discussion Topics

- Soliciting comments regarding range of fuel properties for study test fuels
- Finalize vehicle/engine matrix for emissions testing
- Finalize the selection of appropriate Test cycle(s)
- Continued schedule coordination with Biodiesel research project

Next Meeting

Tentatively scheduled for October 2008

- Visit our web site
 - http://www.arb.ca.gov/fuels/diesel/dieselcomp/dieselcomp.htm

Contact Information

- Floyd Vergara, Manager
 - **(916) 327-5986**
 - fvergara@arb.ca.gov

- Dean Bloudoff
 - (916) 322-1521
 - dbloudof@arb.ca.gov